

# PHASED-ARRAY FLAW DETECTOR FOR FIELD INSPECTIONS

#### PAUT flaw detector

64:64 parallel channels + 4 additional TOFD/ conventional UT channels International code compliance: ASME, AWS, API, ASTM, ISO-EN

#### User-friendly

All-level operators Step-by-step application Calibration wizards Analysis and reporting tools

### Advanced features

Real-time and Adaptive TFM Linear, Matrix, Dual Linear and Dual Matrix arrays 3 axis management 3D imaging 3D real time imaging Cylindrical reconstruction

#### Field ready

10.4" Resistive touch screen Dust & water resistant Hot swap battery Multi-group applications



2PA + TOFD inspection

## **A WIDE RANGE OF APPLICATION**

Weld inspection . Pressure vessel inspection . Blistering characterization . Pipeline girth welds inspection . Small diameter pipes . Corrosion mapping . Nozzle inspection . Composite inspection . Cladded weld inspection . Fillet weld inspection



Weld inspection



Rail inspection



Aircraft wing inspection



Corrosion mapping

# STATE-OF-THE ART PHASED-ARRAY TECHNOLOGY

#### Real-time Total Focusing Method (TFM)

TFM is a powerful technique that focuses at each point of a user-specified zone for accurate defect characterization and high-resolution imaging. GEKKO extends standards views (A-B-S-C Scan + 3D views) to TFM allowing an operator to use advanced imaging in a familiar environment.



Defect characterization



High resolution imaging

### Adaptive TFM

Offered only on GEKKO, the Adaptive TFM module\* computes in real-time TFM images inside components that have irregular surfaces. The ATFM process measures the top surface profile of a component and calculates at the same time a TFM image inside taking into account the variations of this profile. ATFM is usable for L-waves with soft wedges and immersion inspections.





Adaptive Total Focusing Method

\*GEKKO software option

M 2 N

| general         L x W x H: 410mm x 284mm x 126mm         Operating temperature range: from -10°C to 45°C   14°F to 113°F         Storage temperature range: -10°C to 60°C   14°F to 140°F with battery         Operating time: 4h (hot swappable battery)          | 10.4" high contrast resistive screen - resolution 1024x768 px<br>Weight: 6kg (without battery); 0,480g /battery<br>IP66<br>Shock resistance according to MIL-STD-810G                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear scanning, sectorial scanning, compound scanning<br>Maximum active aperture: 64 channels<br>Phased array computation delay laws on plate, cylinder, T & Y, nozzle<br>Focusing mode: true depth, sound path, projection                                       | Linear, matrix, DLA and DMA probes<br>Up to 6 probes   Up to 8 groups   Up to 2,048 delay-laws<br>CIVA fueled phased-array calculator                                                              |
| <b>real-time TFM</b><br>Reconstruction channels: up to 64<br>Max refresh rate: up to 80fps                                                                                                                                                                         | Max number of points of reconstructed image: up to 65k<br>Sound paths: direct (L or S), indirect and converted modes                                                                               |
| <b>pulsers</b><br>64 phased-array channels*:<br>Negative square pulse, width: 35ns to 1250ns<br>Voltage: 12V – 100V with 1V step<br>Max. PRF: up to 20kHz                                                                                                          | <b>4 UT-TOFD channels**:</b><br>Negative square pulse, width: 30ns to 1250ns<br>Voltage: 12V to 200V with 1V step<br>Max. PRF: up to 20kHz                                                         |
| <b>receivers</b><br><b>64 phased-array channels*:</b><br>Input impedance: 50 Ω<br>Frequency range: 0.4 to 20MHz<br>Max. input signal: 2Vpp   TCG – ACG – DGS calibration wizard   DGS<br>Gain: up to 120dB (0.1dB step)<br>Cross-talk between two channels < 50 dB | <b>4 UT-TOFD channels**:</b><br>Input impedance: 50 Ω<br>Frequency range: 0.6 to 25MHz<br>Max. input signal: 2Vpp<br>TCG – DAC calibration wizard<br>Gain: up to 120dB (0.1dB step)                |
| <b>digitizer</b><br>Digitizing and real-time summation on 64 channels<br>FIR filters<br>Real-time averaging up to x32<br>Rectified, RF, envelope                                                                                                                   | Resolution: 16bits<br>Max. sampling frequency: 100 MHz<br>Digitizing depth up to 16k points<br>A-scan range or delay max 65k points                                                                |
| acquisition<br>Hardware acquisition gates<br>A-Scan/Peak data recording<br>FMC recording<br>Acquisition trigger on time, event, encoder                                                                                                                            | Max. data flow 150 MB/s on a 128Gb SSD (extensible up to 1 To)<br>Inspection data file size: up to 10Gb<br>Data transfer through Ethernet<br>800% amplitude range                                  |
| wizards<br>CAD overlay and 3D view<br>Real-time phased array calculator<br>Base-time calibration for conventional UT<br>Wedge calibration (angle, height, velocity)<br>Specimen velocity calibration                                                               | Scanner calibration<br>Amplitude calibration (TCG, DAC, DGS)<br>Probe design   Weld geometry design<br>Amplitude balancing<br>Part geometry with parametric shapes: plate, cylinder, T & Y, nozzle |
| <b>analysis</b><br>Capture © software with analysis and reporting tools – Free viewer<br>A-Scan, B-Scan, C-Scan, D-Scan, Echodynamic, Top view, Side view, 3D view<br>Analysis gates<br>Compatibility with CIVA analysis and ENLIGHT                               | Amplitude range: up to 800%<br>Overlay part geometry: plate, cylinder, T or Y section, nozzle<br>Overlay weld geometry<br>Customizable inspection report                                           |
| <ul> <li>I-O</li> <li>1 IPEX connector for phased-array (can be upgraded to 2 with splitter)</li> <li>3 encoder inputs</li> <li>3 USB 2.0</li> </ul>                                                                                                               | 4 LEMO 00 connectors for conventional UT<br>1 external trigger<br>Acquisition file transfer through Ethernet<br>16 analog inputs                                                                   |

Indicated values may change without notice.

\*Standard: EN ISO 18563-1 for phased array channels \*\*Standard: EN ISO 12668-1 for conventional channels

t. +33 (0)1 60 92 39 65 f. +33 (0)1 60 92 57 31 contact@m2m-ndt.com www.m2m-ndt.com

